2283 lines
68 KiB
Markdown
2283 lines
68 KiB
Markdown
|
# 一. NIO 基础
|
|||
|
|
|||
|
non-blocking io 非阻塞 IO
|
|||
|
|
|||
|
## 1. 三大组件
|
|||
|
|
|||
|
### 1.1 Channel & Buffer
|
|||
|
|
|||
|
channel 有一点类似于 stream,它就是读写数据的**双向通道**,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层
|
|||
|
|
|||
|
```mermaid
|
|||
|
graph LR
|
|||
|
channel --> buffer
|
|||
|
buffer --> channel
|
|||
|
```
|
|||
|
|
|||
|
常见的 Channel 有
|
|||
|
|
|||
|
* FileChannel
|
|||
|
* DatagramChannel
|
|||
|
* SocketChannel
|
|||
|
* ServerSocketChannel
|
|||
|
|
|||
|
|
|||
|
|
|||
|
buffer 则用来缓冲读写数据,常见的 buffer 有
|
|||
|
|
|||
|
* ByteBuffer
|
|||
|
* MappedByteBuffer
|
|||
|
* DirectByteBuffer
|
|||
|
* HeapByteBuffer
|
|||
|
* ShortBuffer
|
|||
|
* IntBuffer
|
|||
|
* LongBuffer
|
|||
|
* FloatBuffer
|
|||
|
* DoubleBuffer
|
|||
|
* CharBuffer
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 1.2 Selector
|
|||
|
|
|||
|
selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途
|
|||
|
|
|||
|
#### 多线程版设计
|
|||
|
|
|||
|
```mermaid
|
|||
|
graph TD
|
|||
|
subgraph 多线程版
|
|||
|
t1(thread) --> s1(socket1)
|
|||
|
t2(thread) --> s2(socket2)
|
|||
|
t3(thread) --> s3(socket3)
|
|||
|
end
|
|||
|
```
|
|||
|
#### ⚠️ 多线程版缺点
|
|||
|
|
|||
|
* 内存占用高
|
|||
|
* 线程上下文切换成本高
|
|||
|
* 只适合连接数少的场景
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 线程池版设计
|
|||
|
|
|||
|
```mermaid
|
|||
|
graph TD
|
|||
|
subgraph 线程池版
|
|||
|
t4(thread) --> s4(socket1)
|
|||
|
t5(thread) --> s5(socket2)
|
|||
|
t4(thread) -.-> s6(socket3)
|
|||
|
t5(thread) -.-> s7(socket4)
|
|||
|
end
|
|||
|
```
|
|||
|
#### ⚠️ 线程池版缺点
|
|||
|
|
|||
|
* 阻塞模式下,线程仅能处理一个 socket 连接
|
|||
|
* 仅适合短连接场景
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### selector 版设计
|
|||
|
|
|||
|
selector 的作用就是配合一个线程来管理多个 channel,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。适合连接数特别多,但流量低的场景(low traffic)
|
|||
|
|
|||
|
```mermaid
|
|||
|
graph TD
|
|||
|
subgraph selector 版
|
|||
|
thread --> selector
|
|||
|
selector --> c1(channel)
|
|||
|
selector --> c2(channel)
|
|||
|
selector --> c3(channel)
|
|||
|
end
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
调用 selector 的 select() 会阻塞直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
## 2. ByteBuffer
|
|||
|
|
|||
|
有一普通文本文件 data.txt,内容为
|
|||
|
|
|||
|
```
|
|||
|
1234567890abcd
|
|||
|
```
|
|||
|
|
|||
|
使用 FileChannel 来读取文件内容
|
|||
|
|
|||
|
```java
|
|||
|
@Slf4j
|
|||
|
public class ChannelDemo1 {
|
|||
|
public static void main(String[] args) {
|
|||
|
try (RandomAccessFile file = new RandomAccessFile("helloword/data.txt", "rw")) {
|
|||
|
FileChannel channel = file.getChannel();
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(10);
|
|||
|
do {
|
|||
|
// 向 buffer 写入
|
|||
|
int len = channel.read(buffer);
|
|||
|
log.debug("读到字节数:{}", len);
|
|||
|
if (len == -1) {
|
|||
|
break;
|
|||
|
}
|
|||
|
// 切换 buffer 读模式
|
|||
|
buffer.flip();
|
|||
|
while(buffer.hasRemaining()) {
|
|||
|
log.debug("{}", (char)buffer.get());
|
|||
|
}
|
|||
|
// 切换 buffer 写模式
|
|||
|
buffer.clear();
|
|||
|
} while (true);
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
输出
|
|||
|
|
|||
|
```
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:10
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 1
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 2
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 3
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 4
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 5
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 6
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 7
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 8
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 9
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 0
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:4
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - a
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - b
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - c
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - d
|
|||
|
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:-1
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 2.1 ByteBuffer 正确使用姿势
|
|||
|
|
|||
|
1. 向 buffer 写入数据,例如调用 channel.read(buffer)
|
|||
|
2. 调用 flip() 切换至**读模式**
|
|||
|
3. 从 buffer 读取数据,例如调用 buffer.get()
|
|||
|
4. 调用 clear() 或 compact() 切换至**写模式**
|
|||
|
5. 重复 1~4 步骤
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 2.2 ByteBuffer 结构
|
|||
|
|
|||
|
ByteBuffer 有以下重要属性
|
|||
|
|
|||
|
* capacity
|
|||
|
* position
|
|||
|
* limit
|
|||
|
|
|||
|
一开始
|
|||
|
|
|||
|
![](img/0021.png)
|
|||
|
|
|||
|
写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态
|
|||
|
|
|||
|
![](img/0018.png)
|
|||
|
|
|||
|
flip 动作发生后,position 切换为读取位置,limit 切换为读取限制
|
|||
|
|
|||
|
![](img/0019.png)
|
|||
|
|
|||
|
读取 4 个字节后,状态
|
|||
|
|
|||
|
![](img/0020.png)
|
|||
|
|
|||
|
clear 动作发生后,状态
|
|||
|
|
|||
|
![](img/0021.png)
|
|||
|
|
|||
|
compact 方法,是把未读完的部分向前压缩,然后切换至写模式
|
|||
|
|
|||
|
![](img/0022.png)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 调试工具类
|
|||
|
|
|||
|
```java
|
|||
|
public class ByteBufferUtil {
|
|||
|
private static final char[] BYTE2CHAR = new char[256];
|
|||
|
private static final char[] HEXDUMP_TABLE = new char[256 * 4];
|
|||
|
private static final String[] HEXPADDING = new String[16];
|
|||
|
private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
|
|||
|
private static final String[] BYTE2HEX = new String[256];
|
|||
|
private static final String[] BYTEPADDING = new String[16];
|
|||
|
|
|||
|
static {
|
|||
|
final char[] DIGITS = "0123456789abcdef".toCharArray();
|
|||
|
for (int i = 0; i < 256; i++) {
|
|||
|
HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
|
|||
|
HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
|
|||
|
}
|
|||
|
|
|||
|
int i;
|
|||
|
|
|||
|
// Generate the lookup table for hex dump paddings
|
|||
|
for (i = 0; i < HEXPADDING.length; i++) {
|
|||
|
int padding = HEXPADDING.length - i;
|
|||
|
StringBuilder buf = new StringBuilder(padding * 3);
|
|||
|
for (int j = 0; j < padding; j++) {
|
|||
|
buf.append(" ");
|
|||
|
}
|
|||
|
HEXPADDING[i] = buf.toString();
|
|||
|
}
|
|||
|
|
|||
|
// Generate the lookup table for the start-offset header in each row (up to 64KiB).
|
|||
|
for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
|
|||
|
StringBuilder buf = new StringBuilder(12);
|
|||
|
buf.append(NEWLINE);
|
|||
|
buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
|
|||
|
buf.setCharAt(buf.length() - 9, '|');
|
|||
|
buf.append('|');
|
|||
|
HEXDUMP_ROWPREFIXES[i] = buf.toString();
|
|||
|
}
|
|||
|
|
|||
|
// Generate the lookup table for byte-to-hex-dump conversion
|
|||
|
for (i = 0; i < BYTE2HEX.length; i++) {
|
|||
|
BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
|
|||
|
}
|
|||
|
|
|||
|
// Generate the lookup table for byte dump paddings
|
|||
|
for (i = 0; i < BYTEPADDING.length; i++) {
|
|||
|
int padding = BYTEPADDING.length - i;
|
|||
|
StringBuilder buf = new StringBuilder(padding);
|
|||
|
for (int j = 0; j < padding; j++) {
|
|||
|
buf.append(' ');
|
|||
|
}
|
|||
|
BYTEPADDING[i] = buf.toString();
|
|||
|
}
|
|||
|
|
|||
|
// Generate the lookup table for byte-to-char conversion
|
|||
|
for (i = 0; i < BYTE2CHAR.length; i++) {
|
|||
|
if (i <= 0x1f || i >= 0x7f) {
|
|||
|
BYTE2CHAR[i] = '.';
|
|||
|
} else {
|
|||
|
BYTE2CHAR[i] = (char) i;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* 打印所有内容
|
|||
|
* @param buffer
|
|||
|
*/
|
|||
|
public static void debugAll(ByteBuffer buffer) {
|
|||
|
int oldlimit = buffer.limit();
|
|||
|
buffer.limit(buffer.capacity());
|
|||
|
StringBuilder origin = new StringBuilder(256);
|
|||
|
appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
|
|||
|
System.out.println("+--------+-------------------- all ------------------------+----------------+");
|
|||
|
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
|
|||
|
System.out.println(origin);
|
|||
|
buffer.limit(oldlimit);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* 打印可读取内容
|
|||
|
* @param buffer
|
|||
|
*/
|
|||
|
public static void debugRead(ByteBuffer buffer) {
|
|||
|
StringBuilder builder = new StringBuilder(256);
|
|||
|
appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
|
|||
|
System.out.println("+--------+-------------------- read -----------------------+----------------+");
|
|||
|
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
|
|||
|
System.out.println(builder);
|
|||
|
}
|
|||
|
|
|||
|
private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
|
|||
|
if (isOutOfBounds(offset, length, buf.capacity())) {
|
|||
|
throw new IndexOutOfBoundsException(
|
|||
|
"expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
|
|||
|
+ ") <= " + "buf.capacity(" + buf.capacity() + ')');
|
|||
|
}
|
|||
|
if (length == 0) {
|
|||
|
return;
|
|||
|
}
|
|||
|
dump.append(
|
|||
|
" +-------------------------------------------------+" +
|
|||
|
NEWLINE + " | 0 1 2 3 4 5 6 7 8 9 a b c d e f |" +
|
|||
|
NEWLINE + "+--------+-------------------------------------------------+----------------+");
|
|||
|
|
|||
|
final int startIndex = offset;
|
|||
|
final int fullRows = length >>> 4;
|
|||
|
final int remainder = length & 0xF;
|
|||
|
|
|||
|
// Dump the rows which have 16 bytes.
|
|||
|
for (int row = 0; row < fullRows; row++) {
|
|||
|
int rowStartIndex = (row << 4) + startIndex;
|
|||
|
|
|||
|
// Per-row prefix.
|
|||
|
appendHexDumpRowPrefix(dump, row, rowStartIndex);
|
|||
|
|
|||
|
// Hex dump
|
|||
|
int rowEndIndex = rowStartIndex + 16;
|
|||
|
for (int j = rowStartIndex; j < rowEndIndex; j++) {
|
|||
|
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
|
|||
|
}
|
|||
|
dump.append(" |");
|
|||
|
|
|||
|
// ASCII dump
|
|||
|
for (int j = rowStartIndex; j < rowEndIndex; j++) {
|
|||
|
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
|
|||
|
}
|
|||
|
dump.append('|');
|
|||
|
}
|
|||
|
|
|||
|
// Dump the last row which has less than 16 bytes.
|
|||
|
if (remainder != 0) {
|
|||
|
int rowStartIndex = (fullRows << 4) + startIndex;
|
|||
|
appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);
|
|||
|
|
|||
|
// Hex dump
|
|||
|
int rowEndIndex = rowStartIndex + remainder;
|
|||
|
for (int j = rowStartIndex; j < rowEndIndex; j++) {
|
|||
|
dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
|
|||
|
}
|
|||
|
dump.append(HEXPADDING[remainder]);
|
|||
|
dump.append(" |");
|
|||
|
|
|||
|
// Ascii dump
|
|||
|
for (int j = rowStartIndex; j < rowEndIndex; j++) {
|
|||
|
dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
|
|||
|
}
|
|||
|
dump.append(BYTEPADDING[remainder]);
|
|||
|
dump.append('|');
|
|||
|
}
|
|||
|
|
|||
|
dump.append(NEWLINE +
|
|||
|
"+--------+-------------------------------------------------+----------------+");
|
|||
|
}
|
|||
|
|
|||
|
private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
|
|||
|
if (row < HEXDUMP_ROWPREFIXES.length) {
|
|||
|
dump.append(HEXDUMP_ROWPREFIXES[row]);
|
|||
|
} else {
|
|||
|
dump.append(NEWLINE);
|
|||
|
dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
|
|||
|
dump.setCharAt(dump.length() - 9, '|');
|
|||
|
dump.append('|');
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public static short getUnsignedByte(ByteBuffer buffer, int index) {
|
|||
|
return (short) (buffer.get(index) & 0xFF);
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 2.3 ByteBuffer 常见方法
|
|||
|
|
|||
|
#### 分配空间
|
|||
|
|
|||
|
可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法
|
|||
|
|
|||
|
```java
|
|||
|
Bytebuffer buf = ByteBuffer.allocate(16);
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 向 buffer 写入数据
|
|||
|
|
|||
|
有两种办法
|
|||
|
|
|||
|
* 调用 channel 的 read 方法
|
|||
|
* 调用 buffer 自己的 put 方法
|
|||
|
|
|||
|
```java
|
|||
|
int readBytes = channel.read(buf);
|
|||
|
```
|
|||
|
|
|||
|
和
|
|||
|
|
|||
|
```java
|
|||
|
buf.put((byte)127);
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 从 buffer 读取数据
|
|||
|
|
|||
|
同样有两种办法
|
|||
|
|
|||
|
* 调用 channel 的 write 方法
|
|||
|
* 调用 buffer 自己的 get 方法
|
|||
|
|
|||
|
```java
|
|||
|
int writeBytes = channel.write(buf);
|
|||
|
```
|
|||
|
|
|||
|
和
|
|||
|
|
|||
|
```java
|
|||
|
byte b = buf.get();
|
|||
|
```
|
|||
|
|
|||
|
get 方法会让 position 读指针向后走,如果想重复读取数据
|
|||
|
|
|||
|
* 可以调用 rewind 方法将 position 重新置为 0
|
|||
|
* 或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### mark 和 reset
|
|||
|
|
|||
|
mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置
|
|||
|
|
|||
|
> **注意**
|
|||
|
>
|
|||
|
> rewind 和 flip 都会清除 mark 位置
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 字符串与 ByteBuffer 互转
|
|||
|
|
|||
|
```java
|
|||
|
ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("你好");
|
|||
|
ByteBuffer buffer2 = Charset.forName("utf-8").encode("你好");
|
|||
|
|
|||
|
debug(buffer1);
|
|||
|
debug(buffer2);
|
|||
|
|
|||
|
CharBuffer buffer3 = StandardCharsets.UTF_8.decode(buffer1);
|
|||
|
System.out.println(buffer3.getClass());
|
|||
|
System.out.println(buffer3.toString());
|
|||
|
```
|
|||
|
|
|||
|
输出
|
|||
|
|
|||
|
```
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| e4 bd a0 e5 a5 bd |...... |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| e4 bd a0 e5 a5 bd |...... |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
class java.nio.HeapCharBuffer
|
|||
|
你好
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### ⚠️ Buffer 的线程安全
|
|||
|
|
|||
|
> Buffer 是**非线程安全的**
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 2.4 Scattering Reads
|
|||
|
|
|||
|
分散读取,有一个文本文件 3parts.txt
|
|||
|
|
|||
|
```
|
|||
|
onetwothree
|
|||
|
```
|
|||
|
|
|||
|
使用如下方式读取,可以将数据填充至多个 buffer
|
|||
|
|
|||
|
```java
|
|||
|
try (RandomAccessFile file = new RandomAccessFile("helloword/3parts.txt", "rw")) {
|
|||
|
FileChannel channel = file.getChannel();
|
|||
|
ByteBuffer a = ByteBuffer.allocate(3);
|
|||
|
ByteBuffer b = ByteBuffer.allocate(3);
|
|||
|
ByteBuffer c = ByteBuffer.allocate(5);
|
|||
|
channel.read(new ByteBuffer[]{a, b, c});
|
|||
|
a.flip();
|
|||
|
b.flip();
|
|||
|
c.flip();
|
|||
|
debug(a);
|
|||
|
debug(b);
|
|||
|
debug(c);
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
结果
|
|||
|
|
|||
|
```
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 6f 6e 65 |one |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 74 77 6f |two |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 74 68 72 65 65 |three |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 2.5 Gathering Writes
|
|||
|
|
|||
|
使用如下方式写入,可以将多个 buffer 的数据填充至 channel
|
|||
|
|
|||
|
```java
|
|||
|
try (RandomAccessFile file = new RandomAccessFile("helloword/3parts.txt", "rw")) {
|
|||
|
FileChannel channel = file.getChannel();
|
|||
|
ByteBuffer d = ByteBuffer.allocate(4);
|
|||
|
ByteBuffer e = ByteBuffer.allocate(4);
|
|||
|
channel.position(11);
|
|||
|
|
|||
|
d.put(new byte[]{'f', 'o', 'u', 'r'});
|
|||
|
e.put(new byte[]{'f', 'i', 'v', 'e'});
|
|||
|
d.flip();
|
|||
|
e.flip();
|
|||
|
debug(d);
|
|||
|
debug(e);
|
|||
|
channel.write(new ByteBuffer[]{d, e});
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
输出
|
|||
|
|
|||
|
```
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 66 6f 75 72 |four |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 66 69 76 65 |five |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
```
|
|||
|
|
|||
|
文件内容
|
|||
|
|
|||
|
```
|
|||
|
onetwothreefourfive
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 2.6 练习
|
|||
|
|
|||
|
网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔
|
|||
|
但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为
|
|||
|
|
|||
|
* Hello,world\n
|
|||
|
* I'm zhangsan\n
|
|||
|
* How are you?\n
|
|||
|
|
|||
|
变成了下面的两个 byteBuffer (黏包,半包)
|
|||
|
|
|||
|
* Hello,world\nI'm zhangsan\nHo
|
|||
|
* w are you?\n
|
|||
|
|
|||
|
现在要求你编写程序,将错乱的数据恢复成原始的按 \n 分隔的数据
|
|||
|
|
|||
|
```java
|
|||
|
public static void main(String[] args) {
|
|||
|
ByteBuffer source = ByteBuffer.allocate(32);
|
|||
|
// 11 24
|
|||
|
source.put("Hello,world\nI'm zhangsan\nHo".getBytes());
|
|||
|
split(source);
|
|||
|
|
|||
|
source.put("w are you?\nhaha!\n".getBytes());
|
|||
|
split(source);
|
|||
|
}
|
|||
|
|
|||
|
private static void split(ByteBuffer source) {
|
|||
|
source.flip();
|
|||
|
int oldLimit = source.limit();
|
|||
|
for (int i = 0; i < oldLimit; i++) {
|
|||
|
if (source.get(i) == '\n') {
|
|||
|
System.out.println(i);
|
|||
|
ByteBuffer target = ByteBuffer.allocate(i + 1 - source.position());
|
|||
|
// 0 ~ limit
|
|||
|
source.limit(i + 1);
|
|||
|
target.put(source); // 从source 读,向 target 写
|
|||
|
debugAll(target);
|
|||
|
source.limit(oldLimit);
|
|||
|
}
|
|||
|
}
|
|||
|
source.compact();
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
## 3. 文件编程
|
|||
|
|
|||
|
### 3.1 FileChannel
|
|||
|
|
|||
|
#### ⚠️ FileChannel 工作模式
|
|||
|
|
|||
|
> FileChannel 只能工作在阻塞模式下
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 获取
|
|||
|
|
|||
|
不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法
|
|||
|
|
|||
|
* 通过 FileInputStream 获取的 channel 只能读
|
|||
|
* 通过 FileOutputStream 获取的 channel 只能写
|
|||
|
* 通过 RandomAccessFile 是否能读写根据构造 RandomAccessFile 时的读写模式决定
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 读取
|
|||
|
|
|||
|
会从 channel 读取数据填充 ByteBuffer,返回值表示读到了多少字节,-1 表示到达了文件的末尾
|
|||
|
|
|||
|
```java
|
|||
|
int readBytes = channel.read(buffer);
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 写入
|
|||
|
|
|||
|
写入的正确姿势如下, SocketChannel
|
|||
|
|
|||
|
```java
|
|||
|
ByteBuffer buffer = ...;
|
|||
|
buffer.put(...); // 存入数据
|
|||
|
buffer.flip(); // 切换读模式
|
|||
|
|
|||
|
while(buffer.hasRemaining()) {
|
|||
|
channel.write(buffer);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
在 while 中调用 channel.write 是因为 write 方法并不能保证一次将 buffer 中的内容全部写入 channel
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 关闭
|
|||
|
|
|||
|
channel 必须关闭,不过调用了 FileInputStream、FileOutputStream 或者 RandomAccessFile 的 close 方法会间接地调用 channel 的 close 方法
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 位置
|
|||
|
|
|||
|
获取当前位置
|
|||
|
|
|||
|
```java
|
|||
|
long pos = channel.position();
|
|||
|
```
|
|||
|
|
|||
|
设置当前位置
|
|||
|
|
|||
|
```java
|
|||
|
long newPos = ...;
|
|||
|
channel.position(newPos);
|
|||
|
```
|
|||
|
|
|||
|
设置当前位置时,如果设置为文件的末尾
|
|||
|
|
|||
|
* 这时读取会返回 -1
|
|||
|
* 这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 大小
|
|||
|
|
|||
|
使用 size 方法获取文件的大小
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 强制写入
|
|||
|
|
|||
|
操作系统出于性能的考虑,会将数据缓存,不是立刻写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 3.2 两个 Channel 传输数据
|
|||
|
|
|||
|
```java
|
|||
|
String FROM = "helloword/data.txt";
|
|||
|
String TO = "helloword/to.txt";
|
|||
|
long start = System.nanoTime();
|
|||
|
try (FileChannel from = new FileInputStream(FROM).getChannel();
|
|||
|
FileChannel to = new FileOutputStream(TO).getChannel();
|
|||
|
) {
|
|||
|
from.transferTo(0, from.size(), to);
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
long end = System.nanoTime();
|
|||
|
System.out.println("transferTo 用时:" + (end - start) / 1000_000.0);
|
|||
|
```
|
|||
|
|
|||
|
输出
|
|||
|
|
|||
|
```
|
|||
|
transferTo 用时:8.2011
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
超过 2g 大小的文件传输
|
|||
|
|
|||
|
```java
|
|||
|
public class TestFileChannelTransferTo {
|
|||
|
public static void main(String[] args) {
|
|||
|
try (
|
|||
|
FileChannel from = new FileInputStream("data.txt").getChannel();
|
|||
|
FileChannel to = new FileOutputStream("to.txt").getChannel();
|
|||
|
) {
|
|||
|
// 效率高,底层会利用操作系统的零拷贝进行优化
|
|||
|
long size = from.size();
|
|||
|
// left 变量代表还剩余多少字节
|
|||
|
for (long left = size; left > 0; ) {
|
|||
|
System.out.println("position:" + (size - left) + " left:" + left);
|
|||
|
left -= from.transferTo((size - left), left, to);
|
|||
|
}
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
实际传输一个超大文件
|
|||
|
|
|||
|
```
|
|||
|
position:0 left:7769948160
|
|||
|
position:2147483647 left:5622464513
|
|||
|
position:4294967294 left:3474980866
|
|||
|
position:6442450941 left:1327497219
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 3.3 Path
|
|||
|
|
|||
|
jdk7 引入了 Path 和 Paths 类
|
|||
|
|
|||
|
* Path 用来表示文件路径
|
|||
|
* Paths 是工具类,用来获取 Path 实例
|
|||
|
|
|||
|
```java
|
|||
|
Path source = Paths.get("1.txt"); // 相对路径 使用 user.dir 环境变量来定位 1.txt
|
|||
|
|
|||
|
Path source = Paths.get("d:\\1.txt"); // 绝对路径 代表了 d:\1.txt
|
|||
|
|
|||
|
Path source = Paths.get("d:/1.txt"); // 绝对路径 同样代表了 d:\1.txt
|
|||
|
|
|||
|
Path projects = Paths.get("d:\\data", "projects"); // 代表了 d:\data\projects
|
|||
|
```
|
|||
|
|
|||
|
* `.` 代表了当前路径
|
|||
|
* `..` 代表了上一级路径
|
|||
|
|
|||
|
例如目录结构如下
|
|||
|
|
|||
|
```
|
|||
|
d:
|
|||
|
|- data
|
|||
|
|- projects
|
|||
|
|- a
|
|||
|
|- b
|
|||
|
```
|
|||
|
|
|||
|
代码
|
|||
|
|
|||
|
```java
|
|||
|
Path path = Paths.get("d:\\data\\projects\\a\\..\\b");
|
|||
|
System.out.println(path);
|
|||
|
System.out.println(path.normalize()); // 正常化路径
|
|||
|
```
|
|||
|
|
|||
|
会输出
|
|||
|
|
|||
|
```
|
|||
|
d:\data\projects\a\..\b
|
|||
|
d:\data\projects\b
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 3.4 Files
|
|||
|
|
|||
|
检查文件是否存在
|
|||
|
|
|||
|
```java
|
|||
|
Path path = Paths.get("helloword/data.txt");
|
|||
|
System.out.println(Files.exists(path));
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
创建一级目录
|
|||
|
|
|||
|
```java
|
|||
|
Path path = Paths.get("helloword/d1");
|
|||
|
Files.createDirectory(path);
|
|||
|
```
|
|||
|
|
|||
|
* 如果目录已存在,会抛异常 FileAlreadyExistsException
|
|||
|
* 不能一次创建多级目录,否则会抛异常 NoSuchFileException
|
|||
|
|
|||
|
|
|||
|
|
|||
|
创建多级目录用
|
|||
|
|
|||
|
```java
|
|||
|
Path path = Paths.get("helloword/d1/d2");
|
|||
|
Files.createDirectories(path);
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
拷贝文件
|
|||
|
|
|||
|
```java
|
|||
|
Path source = Paths.get("helloword/data.txt");
|
|||
|
Path target = Paths.get("helloword/target.txt");
|
|||
|
|
|||
|
Files.copy(source, target);
|
|||
|
```
|
|||
|
|
|||
|
* 如果文件已存在,会抛异常 FileAlreadyExistsException
|
|||
|
|
|||
|
如果希望用 source 覆盖掉 target,需要用 StandardCopyOption 来控制
|
|||
|
|
|||
|
```java
|
|||
|
Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
移动文件
|
|||
|
|
|||
|
```java
|
|||
|
Path source = Paths.get("helloword/data.txt");
|
|||
|
Path target = Paths.get("helloword/data.txt");
|
|||
|
|
|||
|
Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);
|
|||
|
```
|
|||
|
|
|||
|
* StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性
|
|||
|
|
|||
|
|
|||
|
|
|||
|
删除文件
|
|||
|
|
|||
|
```java
|
|||
|
Path target = Paths.get("helloword/target.txt");
|
|||
|
|
|||
|
Files.delete(target);
|
|||
|
```
|
|||
|
|
|||
|
* 如果文件不存在,会抛异常 NoSuchFileException
|
|||
|
|
|||
|
|
|||
|
|
|||
|
删除目录
|
|||
|
|
|||
|
```java
|
|||
|
Path target = Paths.get("helloword/d1");
|
|||
|
|
|||
|
Files.delete(target);
|
|||
|
```
|
|||
|
|
|||
|
* 如果目录还有内容,会抛异常 DirectoryNotEmptyException
|
|||
|
|
|||
|
|
|||
|
|
|||
|
遍历目录文件
|
|||
|
|
|||
|
```java
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");
|
|||
|
AtomicInteger dirCount = new AtomicInteger();
|
|||
|
AtomicInteger fileCount = new AtomicInteger();
|
|||
|
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
|
|||
|
@Override
|
|||
|
public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs)
|
|||
|
throws IOException {
|
|||
|
System.out.println(dir);
|
|||
|
dirCount.incrementAndGet();
|
|||
|
return super.preVisitDirectory(dir, attrs);
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
|
|||
|
throws IOException {
|
|||
|
System.out.println(file);
|
|||
|
fileCount.incrementAndGet();
|
|||
|
return super.visitFile(file, attrs);
|
|||
|
}
|
|||
|
});
|
|||
|
System.out.println(dirCount); // 133
|
|||
|
System.out.println(fileCount); // 1479
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
统计 jar 的数目
|
|||
|
|
|||
|
```java
|
|||
|
Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");
|
|||
|
AtomicInteger fileCount = new AtomicInteger();
|
|||
|
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
|
|||
|
@Override
|
|||
|
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
|
|||
|
throws IOException {
|
|||
|
if (file.toFile().getName().endsWith(".jar")) {
|
|||
|
fileCount.incrementAndGet();
|
|||
|
}
|
|||
|
return super.visitFile(file, attrs);
|
|||
|
}
|
|||
|
});
|
|||
|
System.out.println(fileCount); // 724
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
删除多级目录
|
|||
|
|
|||
|
```java
|
|||
|
Path path = Paths.get("d:\\a");
|
|||
|
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
|
|||
|
@Override
|
|||
|
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
|
|||
|
throws IOException {
|
|||
|
Files.delete(file);
|
|||
|
return super.visitFile(file, attrs);
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public FileVisitResult postVisitDirectory(Path dir, IOException exc)
|
|||
|
throws IOException {
|
|||
|
Files.delete(dir);
|
|||
|
return super.postVisitDirectory(dir, exc);
|
|||
|
}
|
|||
|
});
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### ⚠️ 删除很危险
|
|||
|
|
|||
|
> 删除是危险操作,确保要递归删除的文件夹没有重要内容
|
|||
|
|
|||
|
|
|||
|
|
|||
|
拷贝多级目录
|
|||
|
|
|||
|
```java
|
|||
|
long start = System.currentTimeMillis();
|
|||
|
String source = "D:\\Snipaste-1.16.2-x64";
|
|||
|
String target = "D:\\Snipaste-1.16.2-x64aaa";
|
|||
|
|
|||
|
Files.walk(Paths.get(source)).forEach(path -> {
|
|||
|
try {
|
|||
|
String targetName = path.toString().replace(source, target);
|
|||
|
// 是目录
|
|||
|
if (Files.isDirectory(path)) {
|
|||
|
Files.createDirectory(Paths.get(targetName));
|
|||
|
}
|
|||
|
// 是普通文件
|
|||
|
else if (Files.isRegularFile(path)) {
|
|||
|
Files.copy(path, Paths.get(targetName));
|
|||
|
}
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
});
|
|||
|
long end = System.currentTimeMillis();
|
|||
|
System.out.println(end - start);
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
## 4. 网络编程
|
|||
|
|
|||
|
### 4.1 非阻塞 vs 阻塞
|
|||
|
|
|||
|
#### 阻塞
|
|||
|
|
|||
|
* 阻塞模式下,相关方法都会导致线程暂停
|
|||
|
* ServerSocketChannel.accept 会在没有连接建立时让线程暂停
|
|||
|
* SocketChannel.read 会在没有数据可读时让线程暂停
|
|||
|
* 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置
|
|||
|
* 单线程下,阻塞方法之间相互影响,几乎不能正常工作,需要多线程支持
|
|||
|
* 但多线程下,有新的问题,体现在以下方面
|
|||
|
* 32 位 jvm 一个线程 320k,64 位 jvm 一个线程 1024k,如果连接数过多,必然导致 OOM,并且线程太多,反而会因为频繁上下文切换导致性能降低
|
|||
|
* 可以采用线程池技术来减少线程数和线程上下文切换,但治标不治本,如果有很多连接建立,但长时间 inactive,会阻塞线程池中所有线程,因此不适合长连接,只适合短连接
|
|||
|
|
|||
|
|
|||
|
|
|||
|
服务器端
|
|||
|
|
|||
|
```java
|
|||
|
// 使用 nio 来理解阻塞模式, 单线程
|
|||
|
// 0. ByteBuffer
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(16);
|
|||
|
// 1. 创建了服务器
|
|||
|
ServerSocketChannel ssc = ServerSocketChannel.open();
|
|||
|
|
|||
|
// 2. 绑定监听端口
|
|||
|
ssc.bind(new InetSocketAddress(8080));
|
|||
|
|
|||
|
// 3. 连接集合
|
|||
|
List<SocketChannel> channels = new ArrayList<>();
|
|||
|
while (true) {
|
|||
|
// 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信
|
|||
|
log.debug("connecting...");
|
|||
|
SocketChannel sc = ssc.accept(); // 阻塞方法,线程停止运行
|
|||
|
log.debug("connected... {}", sc);
|
|||
|
channels.add(sc);
|
|||
|
for (SocketChannel channel : channels) {
|
|||
|
// 5. 接收客户端发送的数据
|
|||
|
log.debug("before read... {}", channel);
|
|||
|
channel.read(buffer); // 阻塞方法,线程停止运行
|
|||
|
buffer.flip();
|
|||
|
debugRead(buffer);
|
|||
|
buffer.clear();
|
|||
|
log.debug("after read...{}", channel);
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
客户端
|
|||
|
|
|||
|
```java
|
|||
|
SocketChannel sc = SocketChannel.open();
|
|||
|
sc.connect(new InetSocketAddress("localhost", 8080));
|
|||
|
System.out.println("waiting...");
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 非阻塞
|
|||
|
|
|||
|
* 非阻塞模式下,相关方法都会不会让线程暂停
|
|||
|
* 在 ServerSocketChannel.accept 在没有连接建立时,会返回 null,继续运行
|
|||
|
* SocketChannel.read 在没有数据可读时,会返回 0,但线程不必阻塞,可以去执行其它 SocketChannel 的 read 或是去执行 ServerSocketChannel.accept
|
|||
|
* 写数据时,线程只是等待数据写入 Channel 即可,无需等 Channel 通过网络把数据发送出去
|
|||
|
* 但非阻塞模式下,即使没有连接建立,和可读数据,线程仍然在不断运行,白白浪费了 cpu
|
|||
|
* 数据复制过程中,线程实际还是阻塞的(AIO 改进的地方)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
服务器端,客户端代码不变
|
|||
|
|
|||
|
```java
|
|||
|
// 使用 nio 来理解非阻塞模式, 单线程
|
|||
|
// 0. ByteBuffer
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(16);
|
|||
|
// 1. 创建了服务器
|
|||
|
ServerSocketChannel ssc = ServerSocketChannel.open();
|
|||
|
ssc.configureBlocking(false); // 非阻塞模式
|
|||
|
// 2. 绑定监听端口
|
|||
|
ssc.bind(new InetSocketAddress(8080));
|
|||
|
// 3. 连接集合
|
|||
|
List<SocketChannel> channels = new ArrayList<>();
|
|||
|
while (true) {
|
|||
|
// 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信
|
|||
|
SocketChannel sc = ssc.accept(); // 非阻塞,线程还会继续运行,如果没有连接建立,但sc是null
|
|||
|
if (sc != null) {
|
|||
|
log.debug("connected... {}", sc);
|
|||
|
sc.configureBlocking(false); // 非阻塞模式
|
|||
|
channels.add(sc);
|
|||
|
}
|
|||
|
for (SocketChannel channel : channels) {
|
|||
|
// 5. 接收客户端发送的数据
|
|||
|
int read = channel.read(buffer);// 非阻塞,线程仍然会继续运行,如果没有读到数据,read 返回 0
|
|||
|
if (read > 0) {
|
|||
|
buffer.flip();
|
|||
|
debugRead(buffer);
|
|||
|
buffer.clear();
|
|||
|
log.debug("after read...{}", channel);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 多路复用
|
|||
|
|
|||
|
单线程可以配合 Selector 完成对多个 Channel 可读写事件的监控,这称之为多路复用
|
|||
|
|
|||
|
* 多路复用仅针对网络 IO、普通文件 IO 没法利用多路复用
|
|||
|
* 如果不用 Selector 的非阻塞模式,线程大部分时间都在做无用功,而 Selector 能够保证
|
|||
|
* 有可连接事件时才去连接
|
|||
|
* 有可读事件才去读取
|
|||
|
* 有可写事件才去写入
|
|||
|
* 限于网络传输能力,Channel 未必时时可写,一旦 Channel 可写,会触发 Selector 的可写事件
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 4.2 Selector
|
|||
|
|
|||
|
```mermaid
|
|||
|
graph TD
|
|||
|
subgraph selector 版
|
|||
|
thread --> selector
|
|||
|
selector --> c1(channel)
|
|||
|
selector --> c2(channel)
|
|||
|
selector --> c3(channel)
|
|||
|
end
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
好处
|
|||
|
|
|||
|
* 一个线程配合 selector 就可以监控多个 channel 的事件,事件发生线程才去处理。避免非阻塞模式下所做无用功
|
|||
|
* 让这个线程能够被充分利用
|
|||
|
* 节约了线程的数量
|
|||
|
* 减少了线程上下文切换
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 创建
|
|||
|
|
|||
|
```java
|
|||
|
Selector selector = Selector.open();
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 绑定 Channel 事件
|
|||
|
|
|||
|
也称之为注册事件,绑定的事件 selector 才会关心
|
|||
|
|
|||
|
```java
|
|||
|
channel.configureBlocking(false);
|
|||
|
SelectionKey key = channel.register(selector, 绑定事件);
|
|||
|
```
|
|||
|
|
|||
|
* channel 必须工作在非阻塞模式
|
|||
|
* FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用
|
|||
|
* 绑定的事件类型可以有
|
|||
|
* connect - 客户端连接成功时触发
|
|||
|
* accept - 服务器端成功接受连接时触发
|
|||
|
* read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况
|
|||
|
* write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 监听 Channel 事件
|
|||
|
|
|||
|
可以通过下面三种方法来监听是否有事件发生,方法的返回值代表有多少 channel 发生了事件
|
|||
|
|
|||
|
方法1,阻塞直到绑定事件发生
|
|||
|
|
|||
|
```java
|
|||
|
int count = selector.select();
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
方法2,阻塞直到绑定事件发生,或是超时(时间单位为 ms)
|
|||
|
|
|||
|
```java
|
|||
|
int count = selector.select(long timeout);
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
方法3,不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件
|
|||
|
|
|||
|
```java
|
|||
|
int count = selector.selectNow();
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 select 何时不阻塞
|
|||
|
|
|||
|
> * 事件发生时
|
|||
|
> * 客户端发起连接请求,会触发 accept 事件
|
|||
|
> * 客户端发送数据过来,客户端正常、异常关闭时,都会触发 read 事件,另外如果发送的数据大于 buffer 缓冲区,会触发多次读取事件
|
|||
|
> * channel 可写,会触发 write 事件
|
|||
|
> * 在 linux 下 nio bug 发生时
|
|||
|
> * 调用 selector.wakeup()
|
|||
|
> * 调用 selector.close()
|
|||
|
> * selector 所在线程 interrupt
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 4.3 处理 accept 事件
|
|||
|
|
|||
|
客户端代码为
|
|||
|
|
|||
|
```java
|
|||
|
public class Client {
|
|||
|
public static void main(String[] args) {
|
|||
|
try (Socket socket = new Socket("localhost", 8080)) {
|
|||
|
System.out.println(socket);
|
|||
|
socket.getOutputStream().write("world".getBytes());
|
|||
|
System.in.read();
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
服务器端代码为
|
|||
|
|
|||
|
```java
|
|||
|
@Slf4j
|
|||
|
public class ChannelDemo6 {
|
|||
|
public static void main(String[] args) {
|
|||
|
try (ServerSocketChannel channel = ServerSocketChannel.open()) {
|
|||
|
channel.bind(new InetSocketAddress(8080));
|
|||
|
System.out.println(channel);
|
|||
|
Selector selector = Selector.open();
|
|||
|
channel.configureBlocking(false);
|
|||
|
channel.register(selector, SelectionKey.OP_ACCEPT);
|
|||
|
|
|||
|
while (true) {
|
|||
|
int count = selector.select();
|
|||
|
// int count = selector.selectNow();
|
|||
|
log.debug("select count: {}", count);
|
|||
|
// if(count <= 0) {
|
|||
|
// continue;
|
|||
|
// }
|
|||
|
|
|||
|
// 获取所有事件
|
|||
|
Set<SelectionKey> keys = selector.selectedKeys();
|
|||
|
|
|||
|
// 遍历所有事件,逐一处理
|
|||
|
Iterator<SelectionKey> iter = keys.iterator();
|
|||
|
while (iter.hasNext()) {
|
|||
|
SelectionKey key = iter.next();
|
|||
|
// 判断事件类型
|
|||
|
if (key.isAcceptable()) {
|
|||
|
ServerSocketChannel c = (ServerSocketChannel) key.channel();
|
|||
|
// 必须处理
|
|||
|
SocketChannel sc = c.accept();
|
|||
|
log.debug("{}", sc);
|
|||
|
}
|
|||
|
// 处理完毕,必须将事件移除
|
|||
|
iter.remove();
|
|||
|
}
|
|||
|
}
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 事件发生后能否不处理
|
|||
|
|
|||
|
> 事件发生后,要么处理,要么取消(cancel),不能什么都不做,否则下次该事件仍会触发,这是因为 nio 底层使用的是水平触发
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 4.4 处理 read 事件
|
|||
|
|
|||
|
```java
|
|||
|
@Slf4j
|
|||
|
public class ChannelDemo6 {
|
|||
|
public static void main(String[] args) {
|
|||
|
try (ServerSocketChannel channel = ServerSocketChannel.open()) {
|
|||
|
channel.bind(new InetSocketAddress(8080));
|
|||
|
System.out.println(channel);
|
|||
|
Selector selector = Selector.open();
|
|||
|
channel.configureBlocking(false);
|
|||
|
channel.register(selector, SelectionKey.OP_ACCEPT);
|
|||
|
|
|||
|
while (true) {
|
|||
|
int count = selector.select();
|
|||
|
// int count = selector.selectNow();
|
|||
|
log.debug("select count: {}", count);
|
|||
|
// if(count <= 0) {
|
|||
|
// continue;
|
|||
|
// }
|
|||
|
|
|||
|
// 获取所有事件
|
|||
|
Set<SelectionKey> keys = selector.selectedKeys();
|
|||
|
|
|||
|
// 遍历所有事件,逐一处理
|
|||
|
Iterator<SelectionKey> iter = keys.iterator();
|
|||
|
while (iter.hasNext()) {
|
|||
|
SelectionKey key = iter.next();
|
|||
|
// 判断事件类型
|
|||
|
if (key.isAcceptable()) {
|
|||
|
ServerSocketChannel c = (ServerSocketChannel) key.channel();
|
|||
|
// 必须处理
|
|||
|
SocketChannel sc = c.accept();
|
|||
|
sc.configureBlocking(false);
|
|||
|
sc.register(selector, SelectionKey.OP_READ);
|
|||
|
log.debug("连接已建立: {}", sc);
|
|||
|
} else if (key.isReadable()) {
|
|||
|
SocketChannel sc = (SocketChannel) key.channel();
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(128);
|
|||
|
int read = sc.read(buffer);
|
|||
|
if(read == -1) {
|
|||
|
key.cancel();
|
|||
|
sc.close();
|
|||
|
} else {
|
|||
|
buffer.flip();
|
|||
|
debug(buffer);
|
|||
|
}
|
|||
|
}
|
|||
|
// 处理完毕,必须将事件移除
|
|||
|
iter.remove();
|
|||
|
}
|
|||
|
}
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
开启两个客户端,修改一下发送文字,输出
|
|||
|
|
|||
|
```
|
|||
|
sun.nio.ch.ServerSocketChannelImpl[/0:0:0:0:0:0:0:0:8080]
|
|||
|
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
|
|||
|
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60367]
|
|||
|
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 68 65 6c 6c 6f |hello |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
|
|||
|
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60378]
|
|||
|
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 77 6f 72 6c 64 |world |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 为何要 iter.remove()
|
|||
|
|
|||
|
> 因为 select 在事件发生后,就会将相关的 key 放入 selectedKeys 集合,但不会在处理完后从 selectedKeys 集合中移除,需要我们自己编码删除。例如
|
|||
|
>
|
|||
|
> * 第一次触发了 ssckey 上的 accept 事件,没有移除 ssckey
|
|||
|
> * 第二次触发了 sckey 上的 read 事件,但这时 selectedKeys 中还有上次的 ssckey ,在处理时因为没有真正的 serverSocket 连上了,就会导致空指针异常
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 cancel 的作用
|
|||
|
|
|||
|
> cancel 会取消注册在 selector 上的 channel,并从 keys 集合中删除 key 后续不会再监听事件
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### ⚠️ 不处理边界的问题
|
|||
|
|
|||
|
以前有同学写过这样的代码,思考注释中两个问题,以 bio 为例,其实 nio 道理是一样的
|
|||
|
|
|||
|
```java
|
|||
|
public class Server {
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
ServerSocket ss=new ServerSocket(9000);
|
|||
|
while (true) {
|
|||
|
Socket s = ss.accept();
|
|||
|
InputStream in = s.getInputStream();
|
|||
|
// 这里这么写,有没有问题
|
|||
|
byte[] arr = new byte[4];
|
|||
|
while(true) {
|
|||
|
int read = in.read(arr);
|
|||
|
// 这里这么写,有没有问题
|
|||
|
if(read == -1) {
|
|||
|
break;
|
|||
|
}
|
|||
|
System.out.println(new String(arr, 0, read));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
客户端
|
|||
|
|
|||
|
```java
|
|||
|
public class Client {
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
Socket max = new Socket("localhost", 9000);
|
|||
|
OutputStream out = max.getOutputStream();
|
|||
|
out.write("hello".getBytes());
|
|||
|
out.write("world".getBytes());
|
|||
|
out.write("你好".getBytes());
|
|||
|
max.close();
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
输出
|
|||
|
|
|||
|
```
|
|||
|
hell
|
|||
|
owor
|
|||
|
ld<EFBFBD>
|
|||
|
<EFBFBD>好
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
为什么?
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 处理消息的边界
|
|||
|
|
|||
|
![](img/0023.png)
|
|||
|
|
|||
|
* 一种思路是固定消息长度,数据包大小一样,服务器按预定长度读取,缺点是浪费带宽
|
|||
|
* 另一种思路是按分隔符拆分,缺点是效率低
|
|||
|
* TLV 格式,即 Type 类型、Length 长度、Value 数据,类型和长度已知的情况下,就可以方便获取消息大小,分配合适的 buffer,缺点是 buffer 需要提前分配,如果内容过大,则影响 server 吞吐量
|
|||
|
* Http 1.1 是 TLV 格式
|
|||
|
* Http 2.0 是 LTV 格式
|
|||
|
|
|||
|
|
|||
|
|
|||
|
```mermaid
|
|||
|
sequenceDiagram
|
|||
|
participant c1 as 客户端1
|
|||
|
participant s as 服务器
|
|||
|
participant b1 as ByteBuffer1
|
|||
|
participant b2 as ByteBuffer2
|
|||
|
c1 ->> s: 发送 01234567890abcdef3333\r
|
|||
|
s ->> b1: 第一次 read 存入 01234567890abcdef
|
|||
|
s ->> b2: 扩容
|
|||
|
b1 ->> b2: 拷贝 01234567890abcdef
|
|||
|
s ->> b2: 第二次 read 存入 3333\r
|
|||
|
b2 ->> b2: 01234567890abcdef3333\r
|
|||
|
```
|
|||
|
|
|||
|
服务器端
|
|||
|
|
|||
|
```java
|
|||
|
private static void split(ByteBuffer source) {
|
|||
|
source.flip();
|
|||
|
for (int i = 0; i < source.limit(); i++) {
|
|||
|
// 找到一条完整消息
|
|||
|
if (source.get(i) == '\n') {
|
|||
|
int length = i + 1 - source.position();
|
|||
|
// 把这条完整消息存入新的 ByteBuffer
|
|||
|
ByteBuffer target = ByteBuffer.allocate(length);
|
|||
|
// 从 source 读,向 target 写
|
|||
|
for (int j = 0; j < length; j++) {
|
|||
|
target.put(source.get());
|
|||
|
}
|
|||
|
debugAll(target);
|
|||
|
}
|
|||
|
}
|
|||
|
source.compact(); // 0123456789abcdef position 16 limit 16
|
|||
|
}
|
|||
|
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
// 1. 创建 selector, 管理多个 channel
|
|||
|
Selector selector = Selector.open();
|
|||
|
ServerSocketChannel ssc = ServerSocketChannel.open();
|
|||
|
ssc.configureBlocking(false);
|
|||
|
// 2. 建立 selector 和 channel 的联系(注册)
|
|||
|
// SelectionKey 就是将来事件发生后,通过它可以知道事件和哪个channel的事件
|
|||
|
SelectionKey sscKey = ssc.register(selector, 0, null);
|
|||
|
// key 只关注 accept 事件
|
|||
|
sscKey.interestOps(SelectionKey.OP_ACCEPT);
|
|||
|
log.debug("sscKey:{}", sscKey);
|
|||
|
ssc.bind(new InetSocketAddress(8080));
|
|||
|
while (true) {
|
|||
|
// 3. select 方法, 没有事件发生,线程阻塞,有事件,线程才会恢复运行
|
|||
|
// select 在事件未处理时,它不会阻塞, 事件发生后要么处理,要么取消,不能置之不理
|
|||
|
selector.select();
|
|||
|
// 4. 处理事件, selectedKeys 内部包含了所有发生的事件
|
|||
|
Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); // accept, read
|
|||
|
while (iter.hasNext()) {
|
|||
|
SelectionKey key = iter.next();
|
|||
|
// 处理key 时,要从 selectedKeys 集合中删除,否则下次处理就会有问题
|
|||
|
iter.remove();
|
|||
|
log.debug("key: {}", key);
|
|||
|
// 5. 区分事件类型
|
|||
|
if (key.isAcceptable()) { // 如果是 accept
|
|||
|
ServerSocketChannel channel = (ServerSocketChannel) key.channel();
|
|||
|
SocketChannel sc = channel.accept();
|
|||
|
sc.configureBlocking(false);
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(16); // attachment
|
|||
|
// 将一个 byteBuffer 作为附件关联到 selectionKey 上
|
|||
|
SelectionKey scKey = sc.register(selector, 0, buffer);
|
|||
|
scKey.interestOps(SelectionKey.OP_READ);
|
|||
|
log.debug("{}", sc);
|
|||
|
log.debug("scKey:{}", scKey);
|
|||
|
} else if (key.isReadable()) { // 如果是 read
|
|||
|
try {
|
|||
|
SocketChannel channel = (SocketChannel) key.channel(); // 拿到触发事件的channel
|
|||
|
// 获取 selectionKey 上关联的附件
|
|||
|
ByteBuffer buffer = (ByteBuffer) key.attachment();
|
|||
|
int read = channel.read(buffer); // 如果是正常断开,read 的方法的返回值是 -1
|
|||
|
if(read == -1) {
|
|||
|
key.cancel();
|
|||
|
} else {
|
|||
|
split(buffer);
|
|||
|
// 需要扩容
|
|||
|
if (buffer.position() == buffer.limit()) {
|
|||
|
ByteBuffer newBuffer = ByteBuffer.allocate(buffer.capacity() * 2);
|
|||
|
buffer.flip();
|
|||
|
newBuffer.put(buffer); // 0123456789abcdef3333\n
|
|||
|
key.attach(newBuffer);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
key.cancel(); // 因为客户端断开了,因此需要将 key 取消(从 selector 的 keys 集合中真正删除 key)
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
客户端
|
|||
|
|
|||
|
```java
|
|||
|
SocketChannel sc = SocketChannel.open();
|
|||
|
sc.connect(new InetSocketAddress("localhost", 8080));
|
|||
|
SocketAddress address = sc.getLocalAddress();
|
|||
|
// sc.write(Charset.defaultCharset().encode("hello\nworld\n"));
|
|||
|
sc.write(Charset.defaultCharset().encode("0123\n456789abcdef"));
|
|||
|
sc.write(Charset.defaultCharset().encode("0123456789abcdef3333\n"));
|
|||
|
System.in.read();
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### ByteBuffer 大小分配
|
|||
|
|
|||
|
* 每个 channel 都需要记录可能被切分的消息,因为 ByteBuffer 不能被多个 channel 共同使用,因此需要为每个 channel 维护一个独立的 ByteBuffer
|
|||
|
* ByteBuffer 不能太大,比如一个 ByteBuffer 1Mb 的话,要支持百万连接就要 1Tb 内存,因此需要设计大小可变的 ByteBuffer
|
|||
|
* 一种思路是首先分配一个较小的 buffer,例如 4k,如果发现数据不够,再分配 8k 的 buffer,将 4k buffer 内容拷贝至 8k buffer,优点是消息连续容易处理,缺点是数据拷贝耗费性能,参考实现 [http://tutorials.jenkov.com/java-performance/resizable-array.html](http://tutorials.jenkov.com/java-performance/resizable-array.html)
|
|||
|
* 另一种思路是用多个数组组成 buffer,一个数组不够,把多出来的内容写入新的数组,与前面的区别是消息存储不连续解析复杂,优点是避免了拷贝引起的性能损耗
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 4.5 处理 write 事件
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 一次无法写完例子
|
|||
|
|
|||
|
* 非阻塞模式下,无法保证把 buffer 中所有数据都写入 channel,因此需要追踪 write 方法的返回值(代表实际写入字节数)
|
|||
|
* 用 selector 监听所有 channel 的可写事件,每个 channel 都需要一个 key 来跟踪 buffer,但这样又会导致占用内存过多,就有两阶段策略
|
|||
|
* 当消息处理器第一次写入消息时,才将 channel 注册到 selector 上
|
|||
|
* selector 检查 channel 上的可写事件,如果所有的数据写完了,就取消 channel 的注册
|
|||
|
* 如果不取消,会每次可写均会触发 write 事件
|
|||
|
|
|||
|
|
|||
|
|
|||
|
```java
|
|||
|
public class WriteServer {
|
|||
|
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
ServerSocketChannel ssc = ServerSocketChannel.open();
|
|||
|
ssc.configureBlocking(false);
|
|||
|
ssc.bind(new InetSocketAddress(8080));
|
|||
|
|
|||
|
Selector selector = Selector.open();
|
|||
|
ssc.register(selector, SelectionKey.OP_ACCEPT);
|
|||
|
|
|||
|
while(true) {
|
|||
|
selector.select();
|
|||
|
|
|||
|
Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
|
|||
|
while (iter.hasNext()) {
|
|||
|
SelectionKey key = iter.next();
|
|||
|
iter.remove();
|
|||
|
if (key.isAcceptable()) {
|
|||
|
SocketChannel sc = ssc.accept();
|
|||
|
sc.configureBlocking(false);
|
|||
|
SelectionKey sckey = sc.register(selector, SelectionKey.OP_READ);
|
|||
|
// 1. 向客户端发送内容
|
|||
|
StringBuilder sb = new StringBuilder();
|
|||
|
for (int i = 0; i < 3000000; i++) {
|
|||
|
sb.append("a");
|
|||
|
}
|
|||
|
ByteBuffer buffer = Charset.defaultCharset().encode(sb.toString());
|
|||
|
int write = sc.write(buffer);
|
|||
|
// 3. write 表示实际写了多少字节
|
|||
|
System.out.println("实际写入字节:" + write);
|
|||
|
// 4. 如果有剩余未读字节,才需要关注写事件
|
|||
|
if (buffer.hasRemaining()) {
|
|||
|
// read 1 write 4
|
|||
|
// 在原有关注事件的基础上,多关注 写事件
|
|||
|
sckey.interestOps(sckey.interestOps() + SelectionKey.OP_WRITE);
|
|||
|
// 把 buffer 作为附件加入 sckey
|
|||
|
sckey.attach(buffer);
|
|||
|
}
|
|||
|
} else if (key.isWritable()) {
|
|||
|
ByteBuffer buffer = (ByteBuffer) key.attachment();
|
|||
|
SocketChannel sc = (SocketChannel) key.channel();
|
|||
|
int write = sc.write(buffer);
|
|||
|
System.out.println("实际写入字节:" + write);
|
|||
|
if (!buffer.hasRemaining()) { // 写完了
|
|||
|
key.interestOps(key.interestOps() - SelectionKey.OP_WRITE);
|
|||
|
key.attach(null);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
客户端
|
|||
|
|
|||
|
```java
|
|||
|
public class WriteClient {
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
Selector selector = Selector.open();
|
|||
|
SocketChannel sc = SocketChannel.open();
|
|||
|
sc.configureBlocking(false);
|
|||
|
sc.register(selector, SelectionKey.OP_CONNECT | SelectionKey.OP_READ);
|
|||
|
sc.connect(new InetSocketAddress("localhost", 8080));
|
|||
|
int count = 0;
|
|||
|
while (true) {
|
|||
|
selector.select();
|
|||
|
Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
|
|||
|
while (iter.hasNext()) {
|
|||
|
SelectionKey key = iter.next();
|
|||
|
iter.remove();
|
|||
|
if (key.isConnectable()) {
|
|||
|
System.out.println(sc.finishConnect());
|
|||
|
} else if (key.isReadable()) {
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(1024 * 1024);
|
|||
|
count += sc.read(buffer);
|
|||
|
buffer.clear();
|
|||
|
System.out.println(count);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 write 为何要取消
|
|||
|
|
|||
|
只要向 channel 发送数据时,socket 缓冲可写,这个事件会频繁触发,因此应当只在 socket 缓冲区写不下时再关注可写事件,数据写完之后再取消关注
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 4.6 更进一步
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 利用多线程优化
|
|||
|
|
|||
|
> 现在都是多核 cpu,设计时要充分考虑别让 cpu 的力量被白白浪费
|
|||
|
|
|||
|
|
|||
|
|
|||
|
前面的代码只有一个选择器,没有充分利用多核 cpu,如何改进呢?
|
|||
|
|
|||
|
分两组选择器
|
|||
|
|
|||
|
* 单线程配一个选择器,专门处理 accept 事件
|
|||
|
* 创建 cpu 核心数的线程,每个线程配一个选择器,轮流处理 read 事件
|
|||
|
|
|||
|
|
|||
|
|
|||
|
```java
|
|||
|
public class ChannelDemo7 {
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
new BossEventLoop().register();
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
@Slf4j
|
|||
|
static class BossEventLoop implements Runnable {
|
|||
|
private Selector boss;
|
|||
|
private WorkerEventLoop[] workers;
|
|||
|
private volatile boolean start = false;
|
|||
|
AtomicInteger index = new AtomicInteger();
|
|||
|
|
|||
|
public void register() throws IOException {
|
|||
|
if (!start) {
|
|||
|
ServerSocketChannel ssc = ServerSocketChannel.open();
|
|||
|
ssc.bind(new InetSocketAddress(8080));
|
|||
|
ssc.configureBlocking(false);
|
|||
|
boss = Selector.open();
|
|||
|
SelectionKey ssckey = ssc.register(boss, 0, null);
|
|||
|
ssckey.interestOps(SelectionKey.OP_ACCEPT);
|
|||
|
workers = initEventLoops();
|
|||
|
new Thread(this, "boss").start();
|
|||
|
log.debug("boss start...");
|
|||
|
start = true;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public WorkerEventLoop[] initEventLoops() {
|
|||
|
// EventLoop[] eventLoops = new EventLoop[Runtime.getRuntime().availableProcessors()];
|
|||
|
WorkerEventLoop[] workerEventLoops = new WorkerEventLoop[2];
|
|||
|
for (int i = 0; i < workerEventLoops.length; i++) {
|
|||
|
workerEventLoops[i] = new WorkerEventLoop(i);
|
|||
|
}
|
|||
|
return workerEventLoops;
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void run() {
|
|||
|
while (true) {
|
|||
|
try {
|
|||
|
boss.select();
|
|||
|
Iterator<SelectionKey> iter = boss.selectedKeys().iterator();
|
|||
|
while (iter.hasNext()) {
|
|||
|
SelectionKey key = iter.next();
|
|||
|
iter.remove();
|
|||
|
if (key.isAcceptable()) {
|
|||
|
ServerSocketChannel c = (ServerSocketChannel) key.channel();
|
|||
|
SocketChannel sc = c.accept();
|
|||
|
sc.configureBlocking(false);
|
|||
|
log.debug("{} connected", sc.getRemoteAddress());
|
|||
|
workers[index.getAndIncrement() % workers.length].register(sc);
|
|||
|
}
|
|||
|
}
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
@Slf4j
|
|||
|
static class WorkerEventLoop implements Runnable {
|
|||
|
private Selector worker;
|
|||
|
private volatile boolean start = false;
|
|||
|
private int index;
|
|||
|
|
|||
|
private final ConcurrentLinkedQueue<Runnable> tasks = new ConcurrentLinkedQueue<>();
|
|||
|
|
|||
|
public WorkerEventLoop(int index) {
|
|||
|
this.index = index;
|
|||
|
}
|
|||
|
|
|||
|
public void register(SocketChannel sc) throws IOException {
|
|||
|
if (!start) {
|
|||
|
worker = Selector.open();
|
|||
|
new Thread(this, "worker-" + index).start();
|
|||
|
start = true;
|
|||
|
}
|
|||
|
tasks.add(() -> {
|
|||
|
try {
|
|||
|
SelectionKey sckey = sc.register(worker, 0, null);
|
|||
|
sckey.interestOps(SelectionKey.OP_READ);
|
|||
|
worker.selectNow();
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
});
|
|||
|
worker.wakeup();
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void run() {
|
|||
|
while (true) {
|
|||
|
try {
|
|||
|
worker.select();
|
|||
|
Runnable task = tasks.poll();
|
|||
|
if (task != null) {
|
|||
|
task.run();
|
|||
|
}
|
|||
|
Set<SelectionKey> keys = worker.selectedKeys();
|
|||
|
Iterator<SelectionKey> iter = keys.iterator();
|
|||
|
while (iter.hasNext()) {
|
|||
|
SelectionKey key = iter.next();
|
|||
|
if (key.isReadable()) {
|
|||
|
SocketChannel sc = (SocketChannel) key.channel();
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(128);
|
|||
|
try {
|
|||
|
int read = sc.read(buffer);
|
|||
|
if (read == -1) {
|
|||
|
key.cancel();
|
|||
|
sc.close();
|
|||
|
} else {
|
|||
|
buffer.flip();
|
|||
|
log.debug("{} message:", sc.getRemoteAddress());
|
|||
|
debugAll(buffer);
|
|||
|
}
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
key.cancel();
|
|||
|
sc.close();
|
|||
|
}
|
|||
|
}
|
|||
|
iter.remove();
|
|||
|
}
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 如何拿到 cpu 个数
|
|||
|
|
|||
|
> * Runtime.getRuntime().availableProcessors() 如果工作在 docker 容器下,因为容器不是物理隔离的,会拿到物理 cpu 个数,而不是容器申请时的个数
|
|||
|
> * 这个问题直到 jdk 10 才修复,使用 jvm 参数 UseContainerSupport 配置, 默认开启
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 4.7 UDP
|
|||
|
|
|||
|
* UDP 是无连接的,client 发送数据不会管 server 是否开启
|
|||
|
* server 这边的 receive 方法会将接收到的数据存入 byte buffer,但如果数据报文超过 buffer 大小,多出来的数据会被默默抛弃
|
|||
|
|
|||
|
首先启动服务器端
|
|||
|
|
|||
|
```java
|
|||
|
public class UdpServer {
|
|||
|
public static void main(String[] args) {
|
|||
|
try (DatagramChannel channel = DatagramChannel.open()) {
|
|||
|
channel.socket().bind(new InetSocketAddress(9999));
|
|||
|
System.out.println("waiting...");
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(32);
|
|||
|
channel.receive(buffer);
|
|||
|
buffer.flip();
|
|||
|
debug(buffer);
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
输出
|
|||
|
|
|||
|
```
|
|||
|
waiting...
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
运行客户端
|
|||
|
|
|||
|
```java
|
|||
|
public class UdpClient {
|
|||
|
public static void main(String[] args) {
|
|||
|
try (DatagramChannel channel = DatagramChannel.open()) {
|
|||
|
ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello");
|
|||
|
InetSocketAddress address = new InetSocketAddress("localhost", 9999);
|
|||
|
channel.send(buffer, address);
|
|||
|
} catch (Exception e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
接下来服务器端输出
|
|||
|
|
|||
|
```
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 68 65 6c 6c 6f |hello |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
## 5. NIO vs BIO
|
|||
|
|
|||
|
### 5.1 stream vs channel
|
|||
|
|
|||
|
* stream 不会自动缓冲数据,channel 会利用系统提供的发送缓冲区、接收缓冲区(更为底层)
|
|||
|
* stream 仅支持阻塞 API,channel 同时支持阻塞、非阻塞 API,网络 channel 可配合 selector 实现多路复用
|
|||
|
* 二者均为全双工,即读写可以同时进行
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 5.2 IO 模型
|
|||
|
|
|||
|
同步阻塞、同步非阻塞、同步多路复用、异步阻塞(没有此情况)、异步非阻塞
|
|||
|
|
|||
|
* 同步:线程自己去获取结果(一个线程)
|
|||
|
* 异步:线程自己不去获取结果,而是由其它线程送结果(至少两个线程)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
当调用一次 channel.read 或 stream.read 后,会切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:
|
|||
|
|
|||
|
* 等待数据阶段
|
|||
|
* 复制数据阶段
|
|||
|
|
|||
|
![](img/0033.png)
|
|||
|
|
|||
|
* 阻塞 IO
|
|||
|
|
|||
|
![](img/0039.png)
|
|||
|
|
|||
|
* 非阻塞 IO
|
|||
|
|
|||
|
![](img/0035.png)
|
|||
|
|
|||
|
* 多路复用
|
|||
|
|
|||
|
![](img/0038.png)
|
|||
|
|
|||
|
* 信号驱动
|
|||
|
|
|||
|
* 异步 IO
|
|||
|
|
|||
|
![](img/0037.png)
|
|||
|
|
|||
|
* 阻塞 IO vs 多路复用
|
|||
|
|
|||
|
![](img/0034.png)
|
|||
|
|
|||
|
![](img/0036.png)
|
|||
|
|
|||
|
#### 🔖 参考
|
|||
|
|
|||
|
UNIX 网络编程 - 卷 I
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 5.3 零拷贝
|
|||
|
|
|||
|
#### 传统 IO 问题
|
|||
|
|
|||
|
传统的 IO 将一个文件通过 socket 写出
|
|||
|
|
|||
|
```java
|
|||
|
File f = new File("helloword/data.txt");
|
|||
|
RandomAccessFile file = new RandomAccessFile(file, "r");
|
|||
|
|
|||
|
byte[] buf = new byte[(int)f.length()];
|
|||
|
file.read(buf);
|
|||
|
|
|||
|
Socket socket = ...;
|
|||
|
socket.getOutputStream().write(buf);
|
|||
|
```
|
|||
|
|
|||
|
内部工作流程是这样的:
|
|||
|
|
|||
|
![](img/0024.png)
|
|||
|
|
|||
|
1. java 本身并不具备 IO 读写能力,因此 read 方法调用后,要从 java 程序的**用户态**切换至**内核态**,去调用操作系统(Kernel)的读能力,将数据读入**内核缓冲区**。这期间用户线程阻塞,操作系统使用 DMA(Direct Memory Access)来实现文件读,其间也不会使用 cpu
|
|||
|
|
|||
|
> DMA 也可以理解为硬件单元,用来解放 cpu 完成文件 IO
|
|||
|
|
|||
|
2. 从**内核态**切换回**用户态**,将数据从**内核缓冲区**读入**用户缓冲区**(即 byte[] buf),这期间 cpu 会参与拷贝,无法利用 DMA
|
|||
|
|
|||
|
3. 调用 write 方法,这时将数据从**用户缓冲区**(byte[] buf)写入 **socket 缓冲区**,cpu 会参与拷贝
|
|||
|
|
|||
|
4. 接下来要向网卡写数据,这项能力 java 又不具备,因此又得从**用户态**切换至**内核态**,调用操作系统的写能力,使用 DMA 将 **socket 缓冲区**的数据写入网卡,不会使用 cpu
|
|||
|
|
|||
|
|
|||
|
|
|||
|
可以看到中间环节较多,java 的 IO 实际不是物理设备级别的读写,而是缓存的复制,底层的真正读写是操作系统来完成的
|
|||
|
|
|||
|
* 用户态与内核态的切换发生了 3 次,这个操作比较重量级
|
|||
|
* 数据拷贝了共 4 次
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### NIO 优化
|
|||
|
|
|||
|
通过 DirectByteBuf
|
|||
|
|
|||
|
* ByteBuffer.allocate(10) HeapByteBuffer 使用的还是 java 内存
|
|||
|
* ByteBuffer.allocateDirect(10) DirectByteBuffer 使用的是操作系统内存
|
|||
|
|
|||
|
![](img/0025.png)
|
|||
|
|
|||
|
大部分步骤与优化前相同,不再赘述。唯有一点:java 可以使用 DirectByteBuf 将堆外内存映射到 jvm 内存中来直接访问使用
|
|||
|
|
|||
|
* 这块内存不受 jvm 垃圾回收的影响,因此内存地址固定,有助于 IO 读写
|
|||
|
* java 中的 DirectByteBuf 对象仅维护了此内存的虚引用,内存回收分成两步
|
|||
|
* DirectByteBuf 对象被垃圾回收,将虚引用加入引用队列
|
|||
|
* 通过专门线程访问引用队列,根据虚引用释放堆外内存
|
|||
|
* 减少了一次数据拷贝,用户态与内核态的切换次数没有减少
|
|||
|
|
|||
|
|
|||
|
|
|||
|
进一步优化(底层采用了 linux 2.1 后提供的 sendFile 方法),java 中对应着两个 channel 调用 transferTo/transferFrom 方法拷贝数据
|
|||
|
|
|||
|
![](img/0026.png)
|
|||
|
|
|||
|
1. java 调用 transferTo 方法后,要从 java 程序的**用户态**切换至**内核态**,使用 DMA将数据读入**内核缓冲区**,不会使用 cpu
|
|||
|
2. 数据从**内核缓冲区**传输到 **socket 缓冲区**,cpu 会参与拷贝
|
|||
|
3. 最后使用 DMA 将 **socket 缓冲区**的数据写入网卡,不会使用 cpu
|
|||
|
|
|||
|
可以看到
|
|||
|
|
|||
|
* 只发生了一次用户态与内核态的切换
|
|||
|
* 数据拷贝了 3 次
|
|||
|
|
|||
|
|
|||
|
|
|||
|
进一步优化(linux 2.4)
|
|||
|
|
|||
|
![](img/0027.png)
|
|||
|
|
|||
|
1. java 调用 transferTo 方法后,要从 java 程序的**用户态**切换至**内核态**,使用 DMA将数据读入**内核缓冲区**,不会使用 cpu
|
|||
|
2. 只会将一些 offset 和 length 信息拷入 **socket 缓冲区**,几乎无消耗
|
|||
|
3. 使用 DMA 将 **内核缓冲区**的数据写入网卡,不会使用 cpu
|
|||
|
|
|||
|
整个过程仅只发生了一次用户态与内核态的切换,数据拷贝了 2 次。所谓的【零拷贝】,并不是真正无拷贝,而是在不会拷贝重复数据到 jvm 内存中,零拷贝的优点有
|
|||
|
|
|||
|
* 更少的用户态与内核态的切换
|
|||
|
* 不利用 cpu 计算,减少 cpu 缓存伪共享
|
|||
|
* 零拷贝适合小文件传输
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 5.3 AIO
|
|||
|
|
|||
|
AIO 用来解决数据复制阶段的阻塞问题
|
|||
|
|
|||
|
* 同步意味着,在进行读写操作时,线程需要等待结果,还是相当于闲置
|
|||
|
* 异步意味着,在进行读写操作时,线程不必等待结果,而是将来由操作系统来通过回调方式由另外的线程来获得结果
|
|||
|
|
|||
|
> 异步模型需要底层操作系统(Kernel)提供支持
|
|||
|
>
|
|||
|
> * Windows 系统通过 IOCP 实现了真正的异步 IO
|
|||
|
> * Linux 系统异步 IO 在 2.6 版本引入,但其底层实现还是用多路复用模拟了异步 IO,性能没有优势
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 文件 AIO
|
|||
|
|
|||
|
先来看看 AsynchronousFileChannel
|
|||
|
|
|||
|
```java
|
|||
|
@Slf4j
|
|||
|
public class AioDemo1 {
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
try{
|
|||
|
AsynchronousFileChannel s =
|
|||
|
AsynchronousFileChannel.open(
|
|||
|
Paths.get("1.txt"), StandardOpenOption.READ);
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(2);
|
|||
|
log.debug("begin...");
|
|||
|
s.read(buffer, 0, null, new CompletionHandler<Integer, ByteBuffer>() {
|
|||
|
@Override
|
|||
|
public void completed(Integer result, ByteBuffer attachment) {
|
|||
|
log.debug("read completed...{}", result);
|
|||
|
buffer.flip();
|
|||
|
debug(buffer);
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void failed(Throwable exc, ByteBuffer attachment) {
|
|||
|
log.debug("read failed...");
|
|||
|
}
|
|||
|
});
|
|||
|
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
log.debug("do other things...");
|
|||
|
System.in.read();
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
输出
|
|||
|
|
|||
|
```
|
|||
|
13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - begin...
|
|||
|
13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - do other things...
|
|||
|
13:44:56 [DEBUG] [Thread-5] c.i.aio.AioDemo1 - read completed...2
|
|||
|
+-------------------------------------------------+
|
|||
|
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
|00000000| 61 0d |a. |
|
|||
|
+--------+-------------------------------------------------+----------------+
|
|||
|
```
|
|||
|
|
|||
|
可以看到
|
|||
|
|
|||
|
* 响应文件读取成功的是另一个线程 Thread-5
|
|||
|
* 主线程并没有 IO 操作阻塞
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 💡 守护线程
|
|||
|
|
|||
|
默认文件 AIO 使用的线程都是守护线程,所以最后要执行 `System.in.read()` 以避免守护线程意外结束
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#### 网络 AIO
|
|||
|
|
|||
|
```java
|
|||
|
public class AioServer {
|
|||
|
public static void main(String[] args) throws IOException {
|
|||
|
AsynchronousServerSocketChannel ssc = AsynchronousServerSocketChannel.open();
|
|||
|
ssc.bind(new InetSocketAddress(8080));
|
|||
|
ssc.accept(null, new AcceptHandler(ssc));
|
|||
|
System.in.read();
|
|||
|
}
|
|||
|
|
|||
|
private static void closeChannel(AsynchronousSocketChannel sc) {
|
|||
|
try {
|
|||
|
System.out.printf("[%s] %s close\n", Thread.currentThread().getName(), sc.getRemoteAddress());
|
|||
|
sc.close();
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
private static class ReadHandler implements CompletionHandler<Integer, ByteBuffer> {
|
|||
|
private final AsynchronousSocketChannel sc;
|
|||
|
|
|||
|
public ReadHandler(AsynchronousSocketChannel sc) {
|
|||
|
this.sc = sc;
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void completed(Integer result, ByteBuffer attachment) {
|
|||
|
try {
|
|||
|
if (result == -1) {
|
|||
|
closeChannel(sc);
|
|||
|
return;
|
|||
|
}
|
|||
|
System.out.printf("[%s] %s read\n", Thread.currentThread().getName(), sc.getRemoteAddress());
|
|||
|
attachment.flip();
|
|||
|
System.out.println(Charset.defaultCharset().decode(attachment));
|
|||
|
attachment.clear();
|
|||
|
// 处理完第一个 read 时,需要再次调用 read 方法来处理下一个 read 事件
|
|||
|
sc.read(attachment, attachment, this);
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void failed(Throwable exc, ByteBuffer attachment) {
|
|||
|
closeChannel(sc);
|
|||
|
exc.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
private static class WriteHandler implements CompletionHandler<Integer, ByteBuffer> {
|
|||
|
private final AsynchronousSocketChannel sc;
|
|||
|
|
|||
|
private WriteHandler(AsynchronousSocketChannel sc) {
|
|||
|
this.sc = sc;
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void completed(Integer result, ByteBuffer attachment) {
|
|||
|
// 如果作为附件的 buffer 还有内容,需要再次 write 写出剩余内容
|
|||
|
if (attachment.hasRemaining()) {
|
|||
|
sc.write(attachment);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void failed(Throwable exc, ByteBuffer attachment) {
|
|||
|
exc.printStackTrace();
|
|||
|
closeChannel(sc);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
private static class AcceptHandler implements CompletionHandler<AsynchronousSocketChannel, Object> {
|
|||
|
private final AsynchronousServerSocketChannel ssc;
|
|||
|
|
|||
|
public AcceptHandler(AsynchronousServerSocketChannel ssc) {
|
|||
|
this.ssc = ssc;
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void completed(AsynchronousSocketChannel sc, Object attachment) {
|
|||
|
try {
|
|||
|
System.out.printf("[%s] %s connected\n", Thread.currentThread().getName(), sc.getRemoteAddress());
|
|||
|
} catch (IOException e) {
|
|||
|
e.printStackTrace();
|
|||
|
}
|
|||
|
ByteBuffer buffer = ByteBuffer.allocate(16);
|
|||
|
// 读事件由 ReadHandler 处理
|
|||
|
sc.read(buffer, buffer, new ReadHandler(sc));
|
|||
|
// 写事件由 WriteHandler 处理
|
|||
|
sc.write(Charset.defaultCharset().encode("server hello!"), ByteBuffer.allocate(16), new WriteHandler(sc));
|
|||
|
// 处理完第一个 accpet 时,需要再次调用 accept 方法来处理下一个 accept 事件
|
|||
|
ssc.accept(null, this);
|
|||
|
}
|
|||
|
|
|||
|
@Override
|
|||
|
public void failed(Throwable exc, Object attachment) {
|
|||
|
exc.printStackTrace();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|